

Competition Proposal for ASC

(Shared by Nanyang Technological University)

(Only for ASC reference, all rights reserved)

9.1 Introduction

The ASC student cluster preliminary competition requires a proposal submission

as a prequisite for evaluation by the competition judges for finalist entry selection.

This chapter will provide an insight to the effort and suggested methods required for

preparing and guiding a team to overcome these challenges on a first attempt. The

proposal demonstrates the student’s theoretical ability on cluster competition subjects

ranging from hardware design/architecture, parallel programming, software

applications and code optimisation. This preliminary phase also provides an excellent

chance to teach practical aspects of High Performance Computing (HPC) or

supercomputing in a very competitive learning environment.

During the training phases, aspiring students learn valuable skills that will help

them in their future working careers, team skills, planning, media exposure and

technical writing skills. They also have the opportunity of interacting with experts

during the various courses conducted and consultation sessions from application subject

matter experts.

This guide serves to provide and prepare future aspiring participants on technical

writing guidelines, the best practise and strategies to prepare and submit a professional

document. The road to the finals begins with this initial task of writing this

competition proposal which will bring about personal fulfilment during your

undergraduate life experience. The following sections provide the necessary details

on how to prepare and achieve this target.

9.2 Team Selection and Composition

The primary task for interested students is to form a team with various skill sets

comprising computer engineering, computer science and students from the

Sciences/Engineering faculties to undertake the various challenges outlined in the

proposal. (However this team combination may not be possible, the reasons will not

be discussed in this chapter.)

The interest to participate in ASC competition will require substantially more

effort to prepare as compared to International Supercomputing Conference (ISC) and

Supercomputing Conference (SC) competitions as the questions require a practise

oriented/hands-on approach. Nonetheless the effort to prepare the proposal provides

future student talent an insight to the world of supercomputing from an entry level

perspective. The proposal preparation process will be facilitated by the team advisor

and his/her staff to ensure a team with different skills available for final submission to

the competition committee for judging.

9.3 Basic Requisite

It may seem difficult at first glance to prepare for this daunting task. The required

tasks and guidance shall provide an overview for aspiring participants and stakeholders

to overcome this challenge. As a basic requirement, having Linux fundamentals,

some understanding and exposure to handling of servers would be highly beneficial.

Students may have their first exposure during their academic studies or through their

internships in the industry (if applicable). This is very important as the application

section requires code compilation and this involves an in depth understanding.

Additional training involving the relationship of the software layer should be

introduced as part of the program to provide a complete overview of the basic core

concepts.

It is recommended that participation for such competitions receives the

university’s management support and a team of dedicated staff appointed to support and

train the students. Note that this may also be possible with the students spearheading

the effort to self-learn and prepare the proposal. However this is highly dependent on

the student’s initiative, resourcefulness and team chemistry.

9.4 Training

Training forms an essential component and foundation to provide participants the

basic core concepts to undertake the competition proposal. As the timeline is rather

short and spread over Christmas, New Year’s day and the Chinese Spring festival, an

extremely well planned training plan is mandatory. A well developed training

program should be established to cover subjects ranging from computing theory,

parallel programming, computer hardware, mathematics and software applications.

As part of the training curriculum, short work assignments can be incorporated to

complement understanding and sustain interest. Students who are from Engineering

and Science faculties will initially face a daunting and uphill task to understand and

appreciate the subjects. However it is best to leverage on their expertise in the

application software whilst progressively equipping them with computer

engineering/science concepts.

9.4.1. Training Plan

The training can be developed in 2 phases, basic theory during the initial stages

prior to the release of the preliminary competition details and requirements. Such

trainings will usually be classroom based. Second phase training can be targeted more

specifically towards working on the proposal requirements. This includes hands on

practise. (Hint: Participants may refer to the previous year’s competition proposal

requirements for an overview of the expected software application, usually hardware

design, Linpack test, Scientific/Engineering application and code optimisation.)

As most students may/do not have any prior knowledge to work within a

supercomputing environment, it is imperative that the training materials are written in

simple language and terms to facilitate their understanding, interest and aid their

progressive understanding into advanced content.

Providing essential training support through offline consultation is very helpful in

providing students the opportunity to clarify their doubts and concerns on a personal

basis. (It is recommended the trainer also prepare the subject matter in advance as

part of the training effort before providing consultation.)

To ensure a complete range of training content is administered to the students, it

is essential to collaborate between your university and a research institute & industry

vendor or within the various schools in your university to support this effort. As three

are currently three established competitions (SC, ISC and ASC) across the world today,

there is considerable information available for prior training preparation.

9.5 Training Hardware

The competition proposal provides a balanced content covering design and

practise oriented tasks where participants are required to progressively learn and put

their skills and knowledge to use in the form of throughput results generated from the

scientific/engineering application runs. It is beneficial to seek out a hardware vendor

early and establish a close relationship with them for hardware training sponsorship.

Leveraging on existing vendors partnerships can be a great starting point. On the other

hand, any additional server equipment from your research centre could also be utilised

for hands on practise to setup and establish a mini cluster.

9.5.1. Hardware Platform

There are several types of hardware test platforms available for this purpose:

laptops where participants may practise operating system installation and application

compilation, a two node cluster for testing and code compilation for distributed codes

(MPI). This 2 node cluster is extremely helpful in ensuring that repeatable results can

also be replicated on the test platform provided by the ASC competition organiser. It

would be ideal if students can make use of this short window to also learn to setup a 2

node cluster as part of the program.

Variation in performance run results are expected when migrating codes across

various test platforms therefore it is essential to understand the cluster setup, software

stack and interconnect specification and configuration.

9.6 Competition Proposal

The requirements of the proposal will be made available to participants during the

formal release of the competition details. Attempting the competition proposal

requires a practise oriented approach and understanding of the concepts to fulfil the

tasks. The proposal serves as a formal report designed to convey technical

information in a clear and easily accessible format. It will be divided into sections

which allow different readers to access different levels of information.

9.6.1 Proposal Sections

It is recommended to prepare the proposal with separate sections; main section for

key findings and appendices for supplementary information. Concepts and result

analysis trends should be represented in diagrams and graphs respectively as they

provide an alternate form of representation to the readers/judges to complement your

proposal.

9.6.2 Guidelines for Graphs and Diagrams Presentation

The following section discusses the suggested guidelines for presenting graphs

and diagrams to support your findings in a proposal. Graphing is very useful to

visualize and describe the relationship between two variables (i.e. speedups vs CPU

cores). The independent variable (manipulating variable, i.e. CPU cores) is plotted

on the x-axis and dependant variable is plotted on the y-axis (responding variable, wall

time). Both axes of the graphs should also be labelled with both quantity and units.

The graph scales should also fill the entire page if possible as shown in Figure 9-1.

Figure 9-1 Workload Performance Result.

Illustration with diagrams using a suitable font makes the diagram presentable.

Objects and fonts are interrelated when it is used to convey a subject/topic. Both the

font type and objects in a diagram translate and visualize an idea or concept. Usage

of lines in diagrams should be consistent with the types of lines being used. If a

dashed line has been used to indicate Ethernet connection, do not use the same line

pattern for Infiniband connection in your cluster.

A balance between the objects and whitespace is essential to create a good diagram.

Whitespace can help to emphasize particular elements but also help to balance the

objects in the diagram. It must be noted that using blackspace is not highly

recommended as it adds a visual strain to the reader’s eye and the font colors of the text

will not be easily readable. Shadows give the diagram an unclean and artistic feel;

therefore it is not recommended for use.

Figure 9-2 Example of Figure with Whitespace and Line Variation.

9.6.3 Guidelines for Other Sections

Acknowledgments may be made to individuals or institutions not mentioned

elsewhere in the work who have made significant and important contributions.

9.6.4 Knowledge of High Performance Computing Activities

This section is a relatively simple section which requires you to describe HPC

activities in your university or institute. You may provide a description of the

hardware and the type of research activities which the system is used for. It will be

helpful if you can also provide information of the scale of the massively parallel jobs

being executed on the system queue.

9.6.5 Hardware Design and Energy Efficiency

The hardware system design chapter is not directly linked to the domain software

application due to possibility of limited resources across different regions. Therefore

you do not need to establish a similar hardware setup to run the jobs based on your

theoretical design. In this section, it is important that you understand the importance

of having the essential compiler and math libraries installed on your test cluster.

Having access to a small cluster will provide participants the chance to verify and

implement their findings. These libraries form the basis for ensuring that you can

successfully run your Linpack test and quantify your findings.

You may test and run them on any available hardware cluster you have access to.

It is also highly recommended to consider discussing the contributions and effects of

hardware tuning to operate within the 3kW energy limit. Prior to having access to an

operating cluster, tweaking the bios of the server and attaching a power meter to the

wall socket provides valuable information on the server’s energy consumption

performance. Table 0-1 shows the summary of power consumption in watts and the

energy efficiency details.

Table 0-1 Test Results with different number of CPU cores.

Cores Accelerators Resulting Rmax

[GFlops]

Power

Consumption

[Watts]

Energy Efficiency

[GFlops/Watt]

24 1 K40 GPU 1440 700 2.057

18 1 K40 GPU 1364 635 Est. 2.148

12 1 K40 GPU 1253 570 2.198

6 1 K40 GPU 1116 500 2.232

4 1 K40 GPU 1046 475 2.202

2 1 K40 GPU 895 465 1.924

Note: Configuration of HPL follows that of the single node single GPU test

Servers are generally equipped with redundant features (i.e. power supply) for

reliable operations in critical business environments. Considerations may also include

using energy efficient devices or novel cooling techniques (water cooling) for attaining

performance throughput of your cluster. The power usage of powering your miniature

water pumps for water cooling shall be covered within the 3kW envelope. (Note: You

will sacrifice total CPU cores throughput performance to attain the best Floating Point

Operations per Second (FLOPS) in Linpack testing.)

This will serve to demonstrate your understanding and appreciation of hardware

energy efficiency. All final optimised parameters and the necessary accompanying

justifications should be duly documented as shown in Table 0-2.

9.6.6 High Performance Linpack (HPL)

High Performance Linpack (HPL) is a computation benchmark which measures

the performance of a HPC system by solving a dense matrix of linear equations. In

this particular section, understanding the theory and algorithm concept will be helpful

in providing the opportunity to evaluate and tune the parameters to achieve your desired

results for your cluster. It will be helpful to know that different versions of the HPL

code will provide significantly different results. Therefore it is recommended to adopt

a consistent version number and libraries across different platforms during your tests.

The concepts and findings from this section of HPL inclusive HPC tuning should

be documented and justified to support your selected parameters. Table 0-2 shows an

illustration of the summary findings summarised in table format which you may adopt.

Table 0-2 Energy Efficiency of Different Architectures.

Node

s

CPU

cores

Accelerato

r

Parallelization

Technique
N/NB

P x

Q

Rmax

[GFlo

ps]

Pow

er

[W]

Energy

Eff.

[GFlops/

W]

1 24 None
OpenMP within

node
87000/ 224 1x1 473.3 450 ^ 1.051

1 24 1 Xeon Phi

OpenMP within

node, offload to

Xeon Phi

87000/1024 1x1 1185.6 700 ^ 1.693

1 24 1 K40 GPU

OpenMP within

node, CUDA to

GPU

87000/1024 1x1 1440
700

Est.
2.057

2 48
1 Xeon Phi

per node

OpenMP within

node, MPI

across nodes,

offload to Xeon

Phi

123000/102

4
1x2 2216.9

1400

Est.
1.583

2 48
1 K40

GPU per

OpenMP within

node, MPI

123000/102

4
1x2 2471

1400

Est.
1.765

node across nodes,

CUDA to GPU

CPU: Intel Xeon E5-2695v2: 2.4 GHz * 12 cores * 2 socket * 8 flops/clock =

460.8GFlops per node

MIC: Intel Xeon Phi 5110P: 1.053GHz * 60 cores * 16 flops/clock =

1010.88GFlops per accelerator

GPU: NVidia Tesla K40: According to specifications = 1430GFlops per

accelerator

^ Power was measured at the outlet with a power meter

9.6.7 Application Software

The first step in this section is to install the software from source code. There

are accompanying instruction files in the source file which you have downloaded.

Take a moment to read the contents. Alternatively the developer’s website may also

contain valuable information and instructions to proceed with your code compilation.

(Note: This is valid for all opensource codes) It is easier to start off compiling the

software with serial function, test run and ensure a valid output is achieved. This

forms a baseline for your verification with distributed runs. Installing the code with

parallel capability may require more effort for a first time user and this will improve

with more practice.

During the course of optimisation to obtain the best throughput performance, you

may compile the code with combinations of different compliers and MPI libraries.

This is generally an iterative process but you will gain very much after this challenging

endeavour. You may refer to HPC advisory council’s website for best practise

information on installing various scientific and engineering codes for reference and

guidance. You may start off by installing the code by following the suggested options

to start off and gain confidence in code compilation.

9.6.8 Document Configuration and Assumptions

In the domain software application, it is recommended to document your

understanding of the basic theory and real world application for full appreciation of this

subject matter. Benchmarking performance job runs serve to test the understanding

of distributed compute runs over serial computation. In fact, understanding the

software application requirements (i.e. memory, CPU+accelerator computing capability

etc.) is more important than having the best hardware. If the software is not able to

leverage on the latest hardware architecture, you will not be able to extract the

maximum performance. Edits and amendments to sections of the input file codes

should be documented in your proposal to compare with the baseline sample code.

Some suggested best practise approach for attempting such a question:

 Installing code with recommended parameters

Based on materials provided on Quantum Espresso webpage, in order to make

Quantum Espresso run at its best efficiency, Quantum Espresso must be configured to

work with correct settings. The following setup was used as a starting point for

running the test shown in Table below.

Table 3: Baseline Setup Values

Configuration Value

Usage setup Enabled OpenMP, Enabled Scalapack

Compilers Compiled with C/C++ – Intel C/C++ (icc), Fortran 77/90 – Intel

Fortran (ifort) and Intel MPI (mpiicc and mpiifort)

Libraries Built with MKL BLAS, LAPACK, SCALAPACK, BLACS and

FFT

 Identifying parameters which affect performance of application.

The following parameters have been identified to potentially increase the

performance of Quantum Espresso. Specific values used for testing are placed in the

parenthesis.

 OpenMP Threads (1, 2, 3, 4)

 Total running processor cores, i.e. OpenMPI cores * OpenMP Threads (12, 24,

48)

 npool

 ndiag

For OpenMP threads, low thread counts as recommended by National Energy

Research Scientific Computing Centre. As OpenMP works with a different set of

parallelization, compared to MPI. Having cores allocated for MPI-OpenMP hybrid

will increase the performance if configured without both techniques conflicting with

each other.

The values chosen for total running processor cores is determined by running job

on 1 CPU socket, 1 Computing node and finally multiple, i.e. 2 computing node.

 Demonstrating in depth knowledge of configuration related to problem.

Quantum Espresso is written in highly scalable for large parallel computer system,

its parallelization has five levels: image, pool, plane-wave, task group and linear-

algebra parallelization. However, in two workload, we only use two parallelization

options, which is pool (distribute k-points among npool of CPUs) and linear-algebra

(distribute and parallelize matrix diagonalization and matrix – matrix multiplications

needed in iterative diagonalization). The rest of levels were not tweaked because they

are not related to our problems, i.e. image and plane-wave parallelization, and the

system is not big enough for such scaling to take place.

 Reviewing input file run type and its application.

From the input files given, we can see that workload 1 is about structure relaxation

and workload 2 is just a simple self-consistency run.

Judging from the position of atoms, which has been visualized in Figure 9-3,

workload 2 is actually dealing with an intrinsic defect, O-vacancy, in a zirconium oxide

supercell. Since this kind of intrinsic defects often introduce rich luminescent

properties, understanding these defect-related excitions are important to physicists or

material scientists and they are particularly important for design and optimization of

some nano-materials.

In fact, the calculation was performed in the reciprocal space which deal with the

Brilloin-zone with ease, and most often the K-points mesh method is to spread equally

spaced in Brilloin-zone, known as Monkhorst and Pack method. In workload 1, 4 4 4

K-points was implemented so along each reciprocal lattice-vectors 4 points was spread

there and in workload 2, only centre Γ point was considered.

Figure 9-3 Structure of workload 1 and workload 2

In summary, the number of atoms along with parameters encut, nspin, con_thr,

kpoints will largely determine the performance and the run time.

 Discussion and review of results.

Figure 9-4 Workload 1 npool Comparison.

npool is a factor that reduce communication by agglomerating the workload. In

the above data, it shows that time decreased from npool 1 to npool 2; this is due to the

amount of nodes the application is running on, i.e. 2 nodes, and thus communication

reduces significantly but reducing the need to communicate between nodes frequently.

The highlighted orange bar shows a possible overhead of generating the pool, which

0

20

40

60

80

100

120

140

160

180

1 2 3 4

Ti
m

e
 [

Se
co

n
d

s]

No. of Nodes

One oxygen

atom missing

shows a linear increment. (10s, 20s, 30s, 40s respectively for increasing npool)

The fluctuation of the results from Figure 9-5 was not explainable by any

theoretical means. Thus, we came up a few plausible reasons.

1. Conflicting Hardware Access – The difference between OpenMP and MPI is

that OpenMP threads work on the same set of memories and may result in

conflicts when both threads enters heavy data access phases.

2. Untuned MPI – During the server setup, Intel MPI Automatic Tuning Utility

was not used to check if MPI communication produces consistent speed.

9.6.9 Code Optimisation

For code optimisation, there will be a challenge for both the computer science and

application domain (Scientific or Engineering) member to understand the

multidisciplinary skills involved. The code optimisation section is assigned the

highest score therefore advisor and trainers will need to facilitate and monitor closely

to ensure the essential guidance is provided. It must be noted that close work

collaboration between team members undertaking this section of the work is required.

The optimisation can be attempted from either programming or rewriting the

mathematical algorithm. It must be noted that rewriting the mathematical algorithm

requires extensive efforts. The question will indicate whether it is possible to rewrite

the maths algorithm and the governing rules on the extent of optimisation.

Figure 9-5: Time Taken By Different OpenMP Threads with Different Running

0

50

100

150

200

250

1 2 3 4

Ti
m

e
 [

s]

OpenMP threads

12-cores 24-cores 48-cores

Cores.

Attempt to work on this question requires starting off to evaluate the entire source

code. You may like to first run the correctness test to validate its output generated.

Good scalability performance of HPC applications involves good understanding of the

workload through performing profile analysis, and comparing behaviours of using

different type of hardware architecture (i.e. CPU vs CPU+MIC). This will pinpoint

bottlenecks in segments of sample code and through this, working on the largest

bottleneck can provide you an easier option to tune and improve on the application

performance. Thereafter sections of the code which exhibit poor programming

techniques can be singled out for improvement.

Next you may describe the various stages of the parallel programming design

methodology as an introduction. The next step involves documenting performance

optimisation which covers the different processes and the effects of using different

compiler flags and runtime parameter configurations have on the code output. It is

highly recommended to display code snippets (before and after) to illustrate the

improvements to the results in the proposal. The speedup improvements from the

various improvements implemented should be documented for comparisons.

Reasons/justifications supporting the results will indicate the proficiency level of the

team.

9.7 Proposal Task Distribution

It is recommended that the team members split up the tasks amongst the group to

work on the various section of the proposal. This approach is likely more efficient

and effective as the tasks are executed concurrently.

Amongst the team members, the leader will perform dual roles, a player to work

on tasks and leader to spur the team. Close consultation with team advisor and trainers

is highly recommended to ensure progress, content is valid and presented in a

professionally technical format. Time spent to work on various task varies

accordingly to the extent of task effort required. This ranges from 10 – 200 hours

spent to attempt each task.

9.8 Summary

Attempting to prepare and submit such a proposal requires a team effort. It will

be an initially daunting task but having a proper training framework in place will be

highly effective and beneficial. Having a group of highly motivated individuals will

form the basis to establish a team, prepare and submit the proposal. The proposal

incorporates a substantial hands-on effort to work on the application software question

and code optimisation, therefore having a strong basic foundation of the essential skills

and knowledge is very important.

The suggestions and guidelines presented in this chapter will provide first time

participants suitable guidance & advice to prepare a plan and prepare the team.

Presenting the proposal in a suitable format provides a consistent platform for

evaluation. Technical concepts and findings should be correctly documented and

justified. In short, the following suggestions will form the basis for a good proposal:

- Good basic understanding of the fundamental theory.

- Teamwork and co-ordination.

- Good time management.

- Self learning.

- Progressive review with advisor and subject matter experts on proposal progress.

The proposal will demonstrate the team’s basic understanding of the concepts and

practical implementation of results. Finally with all essential findings documented,

verified and proof read, the proposal will be submitted to the competition committee

for evaluation and judging. This will provide participants an opportunity to impress

the judges.

